Tealle

Chapter 4

Chapter 4

Page 1

Version 1

MULTIPLE CHOICE

1.	A weak electrolyte exists predominantly as in solution. a) atoms b) ions c) molecules d) electrons e) an isotope
2.	Which of the following are weak electrolytes? 1. HCl 2. HC $_2$ H $_3$ O $_2$ 3. NH $_3$ 4. KCl
	a) 1 & 4 b) 1, 2, 3, & 4 c) 2 & 4 d) 2 & 3 e) 1, 2, & 4
3.	What are the spectator ions in the reaction between KOH(aq) and HNO ₃ (aq)? a) K' and H' b) H' and OH- c) K' and NO-3 d) H' and NO-3 e) OH- only
4.	Combining aqueous solutions of BaI_2 and K_2SO_4 affords a precipitate of $BaSO_4$. Which ion(s) is/are spectator ions in the reaction? a) Ba^2 only b) K only c) Ba^2 and SO_4
5.	Which ion(s) is/are spectator ions in the formation of a precipitate of AgBr via combining aqueous solutions of $CoBr_2$ and $AgNO_3$? a) Co^2 and NO_3 b) NO_3 and Br c) Co^2 and Ag d) Br e) NO_3 and Ag
6.	The balanced molecular equation for precipitation of AgI when aqueous solutions of AgNO $_3$ and NaI are mixed is a) AgNO $_3$ (aq) + NaI(aq) \rightarrow AgI(s) + NaNO $_3$ (aq) b) AgNO $_3$ (aq) + NaI(aq) \rightarrow AgI(aq) + NaNO $_3$ (s) c) AgNO $_3$ (s) + NaI(s) \rightarrow AgI(aq) + NaNO $_3$ (aq) d) AgNO $_3$ (aq) + NaI(aq) \rightarrow AgI(s) + NaNO $_3$ (s) e) AgNO $_3$ (s) + NaI(s) \rightarrow AgI(s) + NaNO $_3$ (aq)

	The balanced molecular equation for complete neutralization of $H_2 SO_4$ by KOH in aqueous solution is a) $2H^*$ (aq) + $2OH^-$ (aq) $\rightarrow 2H_2O(1)$ b) $2H^*$ (aq) + $2KOH$ (aq) $\rightarrow 2H_2O(1) + 2K^*$ (aq) c) $H_2 SO_4$ (aq) + $2OH^-$ (aq) $\rightarrow 2H_2O(1) + SO_4^{2-}$ (aq) d) $H_2 SO_4$ (aq) + $2KOH$ (aq) $\rightarrow 2H_2O(1) + K_2 SO_4$ (s) e) $H_2 SO_4$ (aq) + $2KOH$ (aq) $\rightarrow 2H_2O(1) - K_2 SO_4$ (aq)
8.	The reaction between strontium hydroxide and chloric acid produces a) a molecular compound and a weak electrolyte b) two weak electrolytes c) two strong electrolytes d) a molecular compound and a strong electrolyte e) two molecular compounds
9.	Which one of the following is a diprotic acid? a) nitric acid b) chloric acid c) phosphoric acid d) hydrofluroric acid e) sulfuric acid
LO.	A compound was found to be soluble in water. It was also found that addition of acid to an aqueous solution of this compound resulted in the formation of carbon dioxide. Which one of the following cations would form a precipitate when added to an aqueous solution of this compound? a) NH^*_4 b) K^* c) Cr^{3} d) Rb^* e) Na^*
L1.	The balanced reaction between aqueous nitric acid and aqueous strontium hydroxide is $\frac{1}{a} + \frac{1}{2} +$
12.	One method for removal of metal ions from a solution is to convert the metal to its elemental form so it can be filtered out as a solid. Which metal can be used to remove aluminum ions from solution? a) zinc b) cobalt c) lead d) copper
6	none of these
	The reaction of produces hydrogen gas. a) Cu with HNO ₃ b) Co with HCl c) Ag with HCl d) Hg with HCl e) Au with HNO ₃

14.	The net ionic equation for the dissolution of zinc metal in aqueous hydro	Version 1 bromic acid
	is a) $Zn(s) + 2Br^{-}(aq) \rightarrow ZnBr_{2}(aq)$ b) $Zn(s) + 2HBr(aq) \rightarrow ZnBr_{2}(aq) + 2H^{+}(aq)$ c) $Zn(s) + 2HBr(aq) \rightarrow ZnBr_{2}(s) + 2H^{+}(aq)$ d) $Zn(s) + 2H^{+}(aq) \rightarrow Zn^{2}^{+}(aq) + H_{2}(g)$ e) $2Zn(s) + H^{+}(aq) \rightarrow 2Zn^{2}^{+}(aq) + H_{2}(g)$	Br + Hara
15.	Zinc is more active than cobalt and iron but less active than aluminum. more active than nickel but less active than iron. Which of the followin lists the elements in order of increasing activity?	
(a) Co < Ni < Fe < Zn < Al b) Ni < Fe < Co < Zn < Al c) Ni < Co < Fe < Zn < Al d) Fe < Ni < Co < Al < Zn e) Zn < Al < Co < Ni < Fe	
16.	What is the concentration (M) of sodium ions in 4.57 L of a 0.847 M Na ₃ P a) 0.847 b) 3.87 c) 0.185 d) 2.54 e) 0.282	solution?
	How many grams of H ₃ PO ₄ are in 175 mL of a 3.5 M solution of H ₃ PO ₄ ? a) 0.61 b) 60 c) 20 d) 4.9 e) 612	
18.	How many moles of K^* are present in 343 mL of a 1.27 M solution of $K_3 PO_4$? a) 0.436 b) 1.31 c) 0.145 d) 3.70 e) 11.1	
19.	Calculate the concentration (M) of sodium ions in a solution made by dilumL of a 0.874 M solution of sodium sulfide to a total volume of 250.0 mL. (a) 0.175 (b) 4.37 (c) 0.525 (d) 0.350 (e) 0.874	ting 50.0
20.	What is the molarity of an aqueous solution containing 52.5 g of sucrose in 35.5 mL of solution? a) 5.46 b) 1.48 c) 0.104 d) 4.32 e) 1.85	(C ₁₂ H ₂₂ O ₁₁)

			Page 4
21.	T	olution prepared by diluting (14 = May Va 22 (1.00) = May Va 500	Version 1 43.72 mL of 1.005 M aqueous
22.	What is the concentration of chloride? a) 0.0643 M b) 0.386 M c) 0.0965 M d) 0.579 M e) 0.193 M	f chloride ions in a 0.193 M	solution of potassium
23.	the concentration of HC_2H_3C	s combined with enough water 2 is M.	to make a 300 mL solution,
	NaOH for neutralization. T	ic acid (CH ₃ CO ₂ H) solution re the concentration of aceticaci	
25.	The point in a titration at a) equivalence point b) indicator point c) standard point d) endpoint e) volumetric point	which the indicator changes	is called the